卷积运算(二维卷积运算)

 2023-09-15  阅读 13  评论 0

摘要:今天给各位分享卷积运算的知识,其中也会对二维卷积运算进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!卷积运算公式是什么?卷积公式为:f(t)∗g(t)=∫t0f(u)g(t−u)du。卷积(Convolution)是通过两个函数f(t)和g(t)生成第三个函数的一种数学算子,表征函数f(t)与g(t)经过翻转和平移的重叠部分的面积。简介褶积(又名卷积)和反褶积(又名去卷积)是

今天给各位分享卷积运算的知识,其中也会对二维卷积运算进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

卷积运算公式是什么?

卷积公式为:f(t)∗g(t)=∫t0f(u)g(t−u)du。

卷积(Convolution)是通过两个函数f(t)和g(t)生成第三个函数的一种数学算子,表征函数f(t)与g(t)经过翻转和平移的重叠部分的面积。

简介

褶积(又名卷积)和反褶积(又名去卷积)是一种积分变换的数学方法,在许多方面得到了广泛应用。用褶积解决试井解释中的问题,早就取得了很好成果;而反褶积,直到最近,Schroeter、Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反褶积方法很快引起了试井界的广泛注意。

有专家认为,反褶积的应用是试井解释方法发展史上的又一次重大飞跃。他们预言,随着测试新工具和新技术的增加和应用,以及与其它专业研究成果的更紧密结合,试井在油气藏描述中的作用和重要性必将不断增大。

AI数学基础26-卷积(Convolution)

卷积(Convolution)是一个应用非常广泛的函数间的数学运算,类似加、减、乘、除。之所以很多同学听到卷积二字就头皮发麻,是因为不熟悉,而且在日常生活中用的少。加、减、乘、除从小就学习,天天在使用,所以觉得简单、容易,亲切。

加、减、乘、除 用符号 +,-,×,÷,表示;同样,卷积用符号:* 表示。

如上所述,卷积是两个函数之间的数学运算,假设有两个函数f(t), g(t),其卷积运算的结果也是函数,我们记做c(t),则:

c(t) = f(t)*g(t) = (f*g)(t)

注意:f(t)*g(t)和(f*g)(t)这两种写法,都是表示卷积运算,大家在学习一个数学运算的时候, 首先是要学习并熟悉其标记的含义 ,这跟学习加、减、乘、除一样。

卷积具体的计算是如何定义的呢?

两个函数f(t), g(t)是定义在实数范围内可积的函数,其卷积记作:f*g,是其中一个函数翻转并平移后与另一个函数的乘积的积分,如下图所示:

咋一看,有点儿懂了,也有点儿没懂,不着急,接下来我们一步一步图解卷积运算的过程。

首先 ,已知两函数f(t)和g(t),如下图所示

然后 ,根据上述的卷积运算定义,把两个函数f(t)和g(t)自变量由t换为τ,并把其中一个函数,比如g(τ),向右移动t个单位,得到g(τ-t)。

接着 ,把右移t个单位的函数,以纵轴为中心,180°翻转(Flip),得到g(-(τ-t)),即g(t-τ),如下图所示:

这样,经过平移和翻转,我们得到了积分表达式中的f(τ)和g(t-τ)。

接下来 ,τ是自变量,对整个定义域,我们对f(τ)和g(t-τ)积分,如下图所示:

最后 ,完成f(τ)和g(t-τ)的积分运算后,就完成了两个函数f(t)和g(t)的卷积运算。

通过上述演示过程,大家可以把两个函数的卷积运算,简单记住为:“ 卷积就是平移翻转再积分 ”,其过程如下图所示:

若把g(t-τ)看作为是一个加权函数的话,卷积可以认为是对f(τ)取加权值的过程。

跟加、减、乘、除有交换律,结合律相似,卷积也有如下性质

卷积定理 指出,函数卷积的 傅里叶变换 是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如 时域 中的卷积就对应于 频域 中的乘积。

这一定理对 拉普拉斯变换 、 双边拉普拉斯变换 、 Z变换 、 Mellin变换 和 Hartley变换 (参见 Mellin inversion theorem )等各种傅里叶变换的变体同样成立。利用卷积定理可以简化卷积的运算量。对于长度为 n 的序列,按照卷积的定义进行计算,需要做 2n-1 组对位乘法,其 计算复杂度 为O(n²);而利用 傅里叶变换 将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的 快速算法 之后,总的计算复杂度为O(n·log(n))。卷积定理简化运算在工程实现中,经常使用。

卷积在科学、工程和数学上都有很多应用 :

代数 中,整数乘法和多项式乘法都是卷积。

图像处理 中,用作图像模糊、锐化、 边缘检测 。

统计学 中,加权的滑动平均是一种卷积。

概率论 中,两个统计独立变量X与Y的和的 概率密度函数 是X与Y的概率密度函数的卷积。

声学 中, 回声 可以用源声与一个反映各种反射效应的函数的卷积表示。

电子工程 与信号处理中,任一个线性系统的输出都可以通过将输入信号与系统函数(系统的 冲激响应 )做卷积获得。

物理学 中,任何一个线性系统(符合 叠加原理 )都存在卷积。

下一节将继续介绍《 AI数学基础27-离散卷积(Discrete convolution) 》

卷积运算公式是什么?

积分运算公式:∫0dx=C(2)=ln|x|+C。积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。

微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。

相关内容解释:

卷积运算是指从图像的左上角开始,开一个与模板同样大小的活动窗口,窗口图像与模板像元对应起来相乘再相加,并用计算结果代替窗口中心的像元亮度值。然后,活动窗口向右移动一列,并作同样的运算。以此类推,从左到右、从上到下,即可得到一幅新图像。

空间域滤波: 以像元与周围邻域像元的空间关系为基础,通过卷积运算实现图像滤波的一种方法。频率域滤波: 对图像进行傅里叶变换,将图像由图像空间转换到频域空间,然后在频率域中对图像的频谱作分析处理,以改变图像的频率特征。

卷积公式的用法

卷积在工程和数学上都有很多应用:

1、统计学中,加权的滑动平均是一种卷积。

2、概率论中,两个统计独立变量X与Y的和的概率密度函数是X与Y的概率密度函数的卷积。

3、声学中,回声可以用源声与一个反映各种反射效应的函数的卷积表示。

4、电子工程与信号处理中,任一个线性系统的输出都可以通过将输入信号与系统函数(系统的冲激响应)做卷积获得。

5、物理学中,任何一个线性系统(符合叠加原理)都存在卷积。

扩展资料

卷积的应用

在提到卷积之前, 重要的是要提到卷积出现的背景。卷积发生在信号和线性系统的基础上, 也不在背景中发生, 除了所谓褶皱的数学意义和积分 (或求和、离散大小) 外, 将卷积与此背景分开讨论是没有意义的公式。

信号和线性系统, 讨论信号通过线性系统 (即输入和输出之间的数学关系以及所谓的通过系统) 后发生的变化。

所谓线性系统的含义是, 这个所谓的系统, 产生的输出信号和输入信号之间的数学关系是一个线性计算关系。

因此, 实际上, 有必要根据我们需要处理的信号形式来设计所谓的系统传递函数, 那么这个系统的传递函数和输入信号, 在数学形式上就是所谓的卷积关系。

卷积关系的一个重要案例是信号和线性系统或数字信号处理中的卷积定理。

利用该定理, 时域或空间域的卷积运算可以等价于频域的乘法运算, 从而通过使用快速算法, 实现有效的计算, 节省计算成本, 从而节省计算成本。

参考资料来源:百度百科——卷积公式

卷积运算是啥

在泛函分析中,卷积(卷积)、旋积或摺积(英语:Convolution)是通过两个函数f

和g

生成第三个函数的一种数学算子,表徵函数f

与经过翻转和平移与g

的重叠部分的累积。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的 *** 。

简单介绍

卷积是分析数学中一种重要的运算。设:

f(x),g(x)是R1上的两个可积函数,作积分:

可以证明,关于几乎所有的

,上述积分是存在的。这样,随着

x

的不同取值,这个积分就定义了一个新函数h(x),称为函数f

与g

的卷积,记为h(x)=(f*g)(x)。容易验证,(f

*

g)(x)

(g

*

f)(x),并且(f

*

g)(x)

仍为可积函数。这就是说,把卷积代替乘法,L1(R1)1空间是一个代数,甚至是巴拿赫代数。

卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。

由卷积得到的函数f*g

一般要比f

和g

都光滑。特别当g

为具有紧支集的光滑函数,f

为局部可积时,它们的卷积f

*

g

也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f

的光滑函数列fs,这种方法称为函数的光滑化或正则化。

卷积的概念还可以 *** 到数列、测度以及广义函数上去。

卷积在工程和数学上都有很多应用:

统计学中,加权的滑动平均是一种卷积。

概率论中,两个统计独立变量X与Y的和的概率密度函数是X与Y的概率密度函数的卷积。

声学中,回声可以用源声与一个反映各种反射效应的函数的卷积表示。

电子工程与信号处理中,任一个线性系统的输出都可以通过将输入信号与系统函数(系统的冲激响应)做卷积获得。

物理学中,任何一个线性系统(符合叠加原理)都存在卷积。

卷积是一种线性运算,图像处理中常见的mask运算都是卷积,广泛应用于图像滤波。castlman的书对卷积讲得很详细。

高斯变换就是用高斯函数对图像进行卷积。高斯算子可以直接从离散高斯函数得到:

for(i=0;

iN;

i++)

{

for(j=0;

jN;

j++)

{

g[i*N+j]=exp(-((i-(N-1)/2)^2+(j-(N-1)/2)^2))/(2*delta^2));

sum

+=

g[i*N+j];

}

}

再除以

sum

得到归一化算子

N是滤波器的大小,delta自选

首先,再提到卷积之前,必须提到卷积出现的背景。卷积是在信号与线性系统的基础上或背景 *** 现的,脱离这个背景单独谈卷积是没有任何意义的,除了那个所谓褶反公式上的数学意义和积分(或求和,离散情况下)。

信号与线性系统,讨论的就是信号经过一个线性系统以后发生的变化(就是输入

输出

和所经过的所谓系统,这三者之间的数学关系)。所谓线性系统的含义,就是,这个所谓的系统,带来的输出信号与输入信号的数学关系式之间是线性的运算关系。

因此,实际上,都是要根据我们需要待处理的信号形式,来设计所谓的系统传递函数,那么这个系统的传递函数和输入信号,在数学上的形式就是所谓的卷积关系。

卷积关系最重要的一种情况,就是在信号与线性系统或数字信号处理

中的卷积定理。利用该定理,可以将时间域或空间域中的卷积运算等价为频率域的相乘运算,从而利用FFT等快速算法,实现有效的计算,节省运算代价。

什么是卷积

最近有一个项目要用到图像检测,所以现在系统的开始入手深度学习的知识。本来打算用 Google 的 TensorFlow 来实现,毕竟 TFBoy 近几年热度不减,但考虑到项目实施周期,打算前期用百度的 EasyDL 来实现,和百度 AI 的产品经理聊了几次,说是类似的项目,200张样本训练,识别能达到80%,应该算是一个不错的识别率了。

当然,一些基础知识还是要了解一下,这里面有不少的概念还挺不好理解的。深度学习,有专门的卷积神经网络,在图像领域取得了非常好的实际效果,已经把传统的图像处理的方法快干趴下了。看了很多关于卷积的解释,在这里整理一下。

网上流传的一个段子,非常形象。比如说你的老板命令你干活,你却到楼下打台球去了,后来被老板发现,他非常气愤,扇了你一巴掌(注意,这就是输入信号,脉冲),于是你的脸上会渐渐地鼓起来一个包,你的脸就是一个系统,而鼓起来的包就是你的脸对巴掌的响应,好,这样就和信号系统建立起来意义对应的联系。

下面还需要一些假设来保证论证的严谨:假定你的脸是线性时不变系统,也就是说,无论什么时候老板打你一巴掌,打在你脸的同一位置,你的脸上总是会在相同的时间间隔内鼓起来一个相同高度的包来,并且假定以鼓起来的包的大小作为系统输出。好了,那么,下面可以进入核心内容——卷积了!

如果你每天都到楼下去打台球,那么老板每天都要扇你一巴掌,不过当老板打你一巴掌后,你5分钟就消肿了,所以时间长了,你甚至就适应这种生活了……。如果有一天,老板忍无可忍,以0.5秒的间隔开始不间断的扇你,这样问题就来了,第一次扇你鼓起来的包还没消肿,第二个巴掌就来了,你脸上的包就可能鼓起来两倍高,老板不断扇你,脉冲不断作用在你脸上,效果不断叠加了,这样这些效果就可以求和了,结果就是你脸上的包的高度随时间变化的一个函数了(注意理解)。

如果老板再狠一点,频率越来越高,以至于你都辨别不清时间间隔了,那么,求和就变成积分了。可以这样理解,在这个过程中的某一固定的时刻,你的脸上的包的鼓起程度和什么有关呢?和之前每次打你都有关!但是各次的贡献是不一样的,越早打的巴掌,贡献越小,所以这就是说,某一时刻的输出是之前很多次输入乘以各自的衰减系数之后的叠加而形成某一点的输出,然后再把不同时刻的输出点放在一起,形成一个函数,这就是卷积,卷积之后的函数就是你脸上的包的大小随时间变化的函数。

本来你的包几分钟就可以消肿,可是如果连续打,几个小时也消不了肿了,这难道不是一种平滑过程么?反映到剑桥大学的公式上,f(a) 就是第 a 个巴掌,g(x-a)就是第 a 个巴掌在x时刻的作用程度,乘起来再叠加就 ok 了。

从数学上讲,卷积就是一种运算。通俗易懂的说,卷积就是

** 输出 = 输入 * 系统**

虽然它看起来只是个简单的数学公式,但是却有着重要的物理意义,因为自然界这样的系统无处不在,计算一个系统的输出更好度的方法就是运用卷积。更一般的,我们还有很多其他领域的应用:

统计学中,加权的滑动平均是一种卷积。

概率论中,两个统计独立变量X与Y的和的概率密度函数是X与Y的概率密度函数的卷积。

声学中,回声可以用源声与一个反映各种反射效应的函数的卷积表示。

电子工程与信号处理中,任一个线性系统的输出都可以通过将输入信号与系统函数(系统的冲激响应)做卷积获得。

物理学中,任何一个线性系统(符合叠加原理)都存在卷积。

计算机科学中,卷积神经网络(CNN)是深度学习算法中的一种,近年来被广泛用到模式识别、图像处理等领域中。

这6个领域中,卷积起到了至关重要的作用。在面对一些复杂情况时,作为一种强有力的处理方法,卷积给出了简单却有效的输出。对于机器学习领域,尤其是深度学习,最著名的CNN卷积神经网络(Convolutional Neural Network, CNN),在图像领域取得了非常好的实际效果,始一出现便横扫各类算法。

其定义如下:

我们称 (f * g)(n) 为 f,g 的卷积

其连续的定义为:

其离散的定义为:

再通俗的说,看起来像把一张二维的地毯从角沿45度斜线卷起来。

以下是一张正方形地毯,上面保存着f和g在区间[a,\b]的张量积,即U(x,y)=f(x)g(y)。

再看下面最简单的一个例子。

考虑到函数 f 和 g 应该地位平等,或者说变量 x 和 y 应该地位平等,一种可取的办法就是沿直线 x+y = t 卷起来:

卷了有什么用?可以用来做多位数乘法,比如:

要解决的问题是:有两枚骰子,把它们都抛出去,两枚骰子点数加起来为4的概率是多少?

分析一下,两枚骰子点数加起来为4的情况有三种情况:1+3=4, 2+2=4, 3+1=4

因此,两枚骰子点数加起来为4的概率为:

在这里我想进一步用上面的翻转滑动叠加的逻辑进行解释。

首先,因为两个骰子的点数和是4,为了满足这个约束条件,我们还是把函数 g 翻转一下,然后阴影区域上下对应的数相乘,然后累加,相当于求自变量为4的卷积值,如下图所示:

楼下早点铺子生意太好了,供不应求,就买了一台机器,不断的生产馒头。

假设馒头的生产速度是 f(t),那么一天后生产出来的馒头总量为:

馒头生产出来之后,就会慢慢腐败,假设腐败函数为 g(t),比如,10个馒头,24小时会腐败:

用一个模板和一幅图像进行卷积,对于图像上的一个点,让模板的原点和该点重合,然后模板上的点和图像上对应的点相乘,然后各点的积相加,就得到了该点的卷积值。对图像上的每个点都这样处理。由于大多数模板都是对称的,所以模板不旋转。卷积是一种积分运算,用来求两个曲线重叠区域面积。可以看作加权求和,可以用来消除噪声、特征增强。

把一个点的像素值用它周围的点的像素值的加权平均代替。

卷积是一种线性运算,图像处理中常见的mask运算都是卷积,广泛应用于图像滤波。

卷积关系最重要的一种情况,就是在信号与线性系统或数字信号处理中的卷积定理。利用该定理,可以将时间域或空间域中的卷积运算等价为频率域的相乘运算,从而利用FFT等快速算法,实现有效的计算,节省运算代价。

有这么一副图像,可以看到,图像上有很多噪点:

自然图像有其固有特性,也就是说,图像的一部分的统计特性与其他部分是一样的。这也意味着我们在这一部分学习的特征也能用在另一部分上,所以对于这个图像上的所有位置,我们都能使用同样的学习特征。

更恰当的解释是,当从一个大尺寸图像中随机选取一小块,比如说 8x8 作为样本,并且从这个小块样本中学习到了一些特征,这时我们可以把从这个 8x8 样本中学习到的特征作为探测器,应用到这个图像的任意地方中去。特别是,我们可以用从 8x8 样本中所学习到的特征跟原本的大尺寸图像作卷积,从而对这个大尺寸图像上的任一位置获得一个不同特征的激活值。

下面给出一个具体的例子:假设你已经从一个 96x96 的图像中学习到了它的一个 8x8 的样本所具有的特征,假设这是由有 100 个隐含单元的自编码完成的。为了得到卷积特征,需要对 96x96 的图像的每个 8x8 的小块图像区域都进行卷积运算。也就是说,抽取 8x8 的小块区域,并且从起始坐标开始依次标记为(1,1),(1,2),...,一直到(89,89),然后对抽取的区域逐个运行训练过的稀疏自编码来得到特征的激活值。在这个例子里,显然可以得到 100 个集合,每个集合含有 89x89 个卷积特征。

以上,未知来源出处无法一一注明。

卷积运算的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于二维卷积运算、卷积运算的信息别忘了在本站进行查找喔。

版权声明:本站所有资料均为网友推荐收集整理而来,仅供学习和研究交流使用。

原文链接:https://www.sast-sy.com/ea182Bj0FAAdRVAc.html

标签:卷积运算

发表评论:

管理员

  • 内容1434378
  • 积分0
  • 金币0

Copyright © 2022 四叶百科网 Inc. 保留所有权利。 Powered by ZFCMS 1.1.2

页面耗时0.0581秒, 内存占用1.75 MB, 访问数据库18次

粤ICP备21035477号