标准信号源(标准信号源使用方法)

 2023-09-18  阅读 13  评论 0

摘要:今天给各位分享标准信号源的知识,其中也会对标准信号源使用方法进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!射频信号源信号发生器的分类及作用射频信号发生器也叫 信号源 ,按照产生信号类型可以分为正弦信号发生器、函数信号发生器、脉冲信号发生器、随机信号发生器、专用信号发生器。正弦信号发生器提供最基本的正弦波信号,可以作为参考频率和参考幅度信号,用于增益和灵敏度的测量以及仪器的校

今天给各位分享标准信号源的知识,其中也会对标准信号源使用方法进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

射频信号源信号发生器的分类及作用

射频信号发生器也叫 信号源 ,按照产生信号类型可以分为正弦信号发生器、函数信号发生器、脉冲信号发生器、随机信号发生器、专用信号发生器。正弦信号发生器提供最基本的正弦波信号,可以作为参考频率和参考幅度信号,用于增益和灵敏度的测量以及仪器的校准。常见的高频信号发生器和标准信号发生器都属于此类。函数信号发生器可以产生各种函数波形信号,典型的有方波、正弦波、三角波、锯齿波、脉冲等。

函数信号发生器是一种信号发生装置,能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域。

函数信号发生器的功能作用

       信号发生器所产生的信号在电路中常常用来代替前端电路的实际信号,为后端电路提供一个理想信号。由于信号源信号的特征参数均可人为设定,所以可以方便地模拟各种情况下不同特性的信号,对于产品研发和电路实验特别有用。在电路测试中,我们可以通过测量、对比输入和输出信号,来判断信号处理电路的功能和特性是否达到设计要求。

       信号发生器在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

       高精度的信号发生器在计量和校准领域也可以作为标准信号源(参考源),待校准仪器以参考源为标准进行调校。由此可看出,信号发生器可广泛应用在电子研发、维修、测量、校准等领域。

函数 信号发生器 用途

产生所需参数的电测试信号仪器。按其信号波形分为四大类:

①正弦信号发生器

主要用于测量电路和系统的频率特性、非线性失真、增益及灵敏度等。按其不同性能和用途还可细分为低频(20赫至10兆赫)信号发生器、高频(100千赫至300兆赫)信号发生器、微波信号发生器、扫频和程控信号发生器、频率合成式信号发生器等。

②函数(波形)信号发生器

能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域。

③脉冲信号发生器

能产生宽度、幅度和重复频率可调的矩形脉冲的发生器,可用以测试线性系统的瞬态响应,或用作模拟信号来测试雷达、多路通信和其他脉冲数字系统的性能。

④随机信号发生器

通常又分为噪声信号发生器和伪随机信号发生器两类。噪声信号发生器主要用途为:在待测系统中引入一个随机信号,以模拟实际工作条件中的噪声而测定系统性能;外加一个已知噪声信号与系统内部噪声比较以测定噪声系数;用随机信号代替正弦或脉冲信号,以测定系统动态特性等。当用噪声信号进行相关函数测量时,若平均测量时间不够长,会出现统计性误差,可用伪随机信号来解决。

信号偏移的概念

信号偏移是通过调整电位器可以调整标准波形的幅值和频率;

根据需求将信号的偏移作调整,通过调整电位器可以调整标准波形在时间轴上的位置。

信号发生器的分类和用途是什么?

信号发生器分类及用途:

1、正弦信号发生器。正弦信号发生器:正弦信号主要用于测量电路和系统的频率特性、非线性失真、增益及灵敏度等。按频率覆盖范围分为低频信号发生器、高频信号发生器和微波信号发生器;按输出电平可调节范围和稳定度分为简易信号发生器(即信号源)、标准信号发生器(输出功率能准确地衰减到-100分贝毫瓦以下)和功率信号发生器(输出功率达数十毫瓦以上);按频率改变的方式分为调谐式信号发生器、扫频式信号发生器、程控式信号发生器和频率合成式信号发生器等。

2、低频信号发生器。包括音频(200~20000赫)和视频(1赫~10兆赫)范围的正弦波发生器。主振级一般用RC式振荡器,也可用差频振荡器。为便于测试系统的频率特性,要求输出幅频特性平和波形失真小。

3、高频信号发生器。频率为 100千赫~30兆赫的高频、30~300兆赫的甚高频信号发生器。一般采用 LC调谐式振荡器,频率可由调谐电容器的度盘刻度读出。主要用途是测量各种接收机的技术指标。输出信号可用内部或外加的低频正弦信号调幅或调频,使输出载频电压能够衰减到1微伏以下。(图1)的输出信号电平能准确读数,所加的调幅度或频偏也能用电表读出。此外,仪器还有防止信号泄漏的良好屏蔽。

4、微波信号发生器。从分米波直到毫米波波段的信号发生器。信号通常由带分布参数谐振腔的超高频三极管和反射速调管产生,但有逐渐被微波晶体管、场效应管和耿氏二极管等固体器件取代的趋势。仪器一般靠机械调谐腔体来改变频率,每台可覆盖一个倍频程左右,由腔体耦合出的信号功率一般可达10毫瓦以上。简易信号源只要求能加1000赫方波调幅,而标准信号发生器则能将输出基准电平调节到1毫瓦,再从后随衰减器读出信号电平的分贝毫瓦值;还必须有内部或外加矩形脉冲调幅,以便测试雷达等接收机。

5、扫频和程控信号发生器。扫频信号发生器能够产生幅度恒定、频率在限定范围内作线性变化的信号。在高频和甚高频段用低频扫描电压或电流控制振荡回路元件(如变容管或磁芯线圈)来实现扫频振荡;在微波段早期采用电压调谐扫频,用改变返波管螺旋线电极的直流电压来改变振荡频率,后来广泛采用磁调谐扫频,以YIG铁氧体小球作微波固体振荡器的调谐回路,用扫描电流控制直流磁场改变小球的谐振频率。扫频信号发生器有自动扫频、手控、程控和远控等工作方式。

6、频率合成式信号发生器。这种发生器的信号不是由振荡器直接产生,而是以高稳定度石英振荡器作为标准频率源,利用频率合成技术形成所需之任意频率的信号,具有与标准频率源相同的频率准确度和稳定度。输出信号频率通常可按十进位数字选择,最高能达11位数字的极高分辨力。频率除用手动选择外还可程控和远控,也可进行步级式扫频,适用于自动测试系统。直接式频率合成器由晶体振荡、加法、乘法、滤波和放大等电路组成,变换频率迅速但电路复杂,最高输出频率只能达1000兆赫左右。用得较多的间接式频率合成器是利用标准频率源通过锁相环控制电调谐振荡器(在环路中同时能实现倍频、分频和混频),使之产生并输出各种所需频率的信号。这种合成器的最高频率可达26.5吉赫。高稳定度和高分辨力的频率合成器,配上多种调制功能(调幅、调频和调相),加上放大、稳幅和衰减等电路,便构成一种新型的高性能、可程控的合成式信号发生器,还可作为锁相式扫频发生器。

7、函数发生器。又称波形发生器。它能产生某些特定的周期性时间函数波形(主要是正弦波、方波、三角波、锯齿波和脉冲波等)信号。频率范围可从几毫赫甚至几微赫的超低频直到几十兆赫。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域。图2为产生上述波形的方法之一,将积分电路与某种带有回滞特性的阈值开关电路(如施米特触发器)相连成环路,积分器能将方波积分成三角波。施米特电路又能使三角波上升到某一阈值或下降到另一阈值时发生跃变而形成方波,频率除能随积分器中的RC值的变化而改变外,还能用外加电压控制两个阈值而改变。将三角波另行加到由很多不同偏置二极管组成的整形网络,形成许多不同斜度的折线段,便可形成正弦波。另一种构成方式是用频率合成器产生正弦波,再对它多次放大、削波而形成方波,再将方波积分成三角波和正、负斜率的锯齿波等。对这些函数发生器的频率都可电控、程控、锁定和扫频,仪器除工作于连续波状态外,还能按键控、门控或触发等方式工作。

8、脉冲信号发生器。产生宽度、幅度和重复频率可调的矩形脉冲的发生器,可用以测试线性系统的瞬态响应,或用模拟信号来测试雷达、多路通信和其他脉冲数字系统的性能。脉冲发生器主要由主控振荡器、延时级、脉冲形成级、输出级和衰减器等组成。主控振荡器通常为多谐振荡器之类的电路,除能自激振荡外,主要按触发方式工作。通常在外加触发信号之后首先输出一个前置触发脉冲,以便提前触发示波器等观测仪器,然后再经过一段可调节的延迟时间才输出主信号脉冲,其宽度可以调节。有的能输出成对的主脉冲,有的能分两路分别输出不同延迟的主脉冲。

9、随机信号发生器。随机信号发生器分为噪声信号发生器和伪随机信号发生器两类。

10、噪声信号发生器。完全随机性信号是在工作频带内具有均匀频谱的白噪声。常用的白噪声发生器主要有:工作于1000兆赫以下同轴线系统的饱和二极管式白噪声发生器;用于微波波导系统的气体放电管式白噪声发生器;利用晶体二极管反向电流中噪声的固态噪声源(可工作在18吉赫以下整个频段内)等。噪声发生器输出的强度必须已知,通常用其输出噪声功率超过电阻热噪声的分贝数(称为超噪比)或用其噪声温度来表示。噪声信号发生器主要用途是:①在待测系统中引入一个随机信号,以模拟实际工作条件中的噪声而测定系统的性能;②外加一个已知噪声信号与系统内部噪声相比较以测定噪声系数;③用随机信号代替正弦或脉冲信号,以测试系统的动态特性。例如,用白噪声作为输入信号而测出网络的输出信号与输入信号的互相关函数,便可得到这一网络的冲激响应函数。

11、伪随机信号发生器。用白噪声信号进行相关函数测量时,若平均测量时间不够长,则会出现统计性误差,这可用伪随机信号来解决。当二进制编码信号的脉冲宽度墹T足够小,且一个码周期所含墹T数N很大时,则在低于fb=1/墹T的频带内信号频谱的幅度均匀,称为伪随机信号。只要所取的测量时间等于这种编码信号周期的整数倍,便不会引入统计性误差。二进码信号还能提供相关测量中所需的时间延迟。伪随机编码信号发生器由带有反馈环路的n级移位寄存器组成,所产生的码长为N=2-1。

北京智创翔和科技有限公司是专业从事仪器仪表及工控设备为主的公司,公司DRUCK信号发生器是回路电流测试、仪表维护和阀门开度测试的基本工具。操作简单,具有清晰屏幕LCD显示。GE DRUCK UPS3是一款手坚式,操作简单方便的回路校验仪。

如何选购“三相标准源”?

“三相标准源”又称程控测试电源、三相程控电源、三相标准测试电源及三相程控测试电源,三相标准精密测试电源适用于计量部门对各种电压、电流、功率等电参数表计的检测,用于电力系统的电测、热工、远动、调度等需要测量、检验及高精度标准信号源的电力部门和企业,“三相标准源”还适用于其它需要高精度标准信号源进行测量、检验的场合。

“三相标准源”可以输出频率、相位及幅度可调的高精度电压、电流,是非常高精度的可调电压电流标准源。三相标准精密测试电源可以输出非常纯净的正弦电压电流,其失真度不超过0.1%,有着非常高的输出稳定度,典型值为0.03%RD,因此其非常适合用于需要高精度检验校准的工作场合。这是三相标准精密测试电源的作用。我们以市场上广泛使用的“GY4060A三相标准源”举例说明,购买“三相标准源”要注意一下几点:

1. “三相标准源”内嵌高等级标准功率电能表,并以此为标准进行数字闭环反馈,电压、电流、频率、相位、有功功率、无功功率、视在功率、功率因数等各参量均可作为标准使用。

2. “三相标准源”具有多种保护功能:限流保护、功放保护、电压短路保护、电流开路保护、功放热保护等功能。

3. 三相电压、电流回路独立控制,每一相电压、电流输出参量可分别调节。

4. 智能档位:在仪器允许输出的范围内,用户可以任意设定三相电压、电流各自的额定电压、电流档位,电压电流的试验点、调节细度均参照用户设定的额定档位值,方便用户操作。

5. 带RS232串口,开放通讯规约,便于计算机控制及升级软件

6. “三相标准源”有0.05级、0.1级二种精度等级产品供客户选用。

“三相标准源”选择难点就是精度,而且要求是全量程精度都要保证要求,对生产厂家是一个不小的挑战,这一点一定要注意。

标准信号源的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于标准信号源使用方法、标准信号源的信息别忘了在本站进行查找喔。

版权声明:本站所有资料均为网友推荐收集整理而来,仅供学习和研究交流使用。

原文链接:https://www.sast-sy.com/ea2deBj0EBwZYUQA.html

标签:信号源标准

发表评论:

管理员

  • 内容1434378
  • 积分0
  • 金币0

Copyright © 2022 四叶百科网 Inc. 保留所有权利。 Powered by ZFCMS 1.1.2

页面耗时0.0699秒, 内存占用1.75 MB, 访问数据库18次

粤ICP备21035477号