缺氧诱导因子(缺氧诱导因子脯氨酰羟化酶抑制剂)

 2023-09-17  阅读 17  评论 0

摘要:今天给各位分享缺氧诱导因子的知识,其中也会对缺氧诱导因子脯氨酰羟化酶抑制剂进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!如何通俗地理解 2019 年诺贝尔生理学或医学奖?细胞是如何感知和适应氧气的?获奖是表彰他们在理解细胞感知和适应氧气变化机制中的贡献。生物体感受氧气浓度的信号识别系统是生命最基本的功能,然而学界对此却所知甚少。具体如下:感到缺氧时,人体细胞就会分泌一种激素

今天给各位分享缺氧诱导因子的知识,其中也会对缺氧诱导因子脯氨酰羟化酶抑制剂进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

如何通俗地理解 2019 年诺贝尔生理学或医学奖?细胞是如何感知和适应氧气的?

获奖是表彰他们在理解细胞感知和适应氧气变化机制中的贡献。生物体感受氧气浓度的信号识别系统是生命最基本的功能,然而学界对此却所知甚少。具体如下:

感到缺氧时,人体细胞就会分泌一种激素,让身体多生产点儿红细胞,尽快恢复氧气的供应。可见,缺氧并不可怕,因为人体细胞能够探测氧气的浓度,并随时作出反应。那么,人体细胞又是怎么做到的呢?

美国医学家格雷格·塞门扎,和英国医学家彼得·拉特克利夫发现,这是因为在人体细胞中,有一种懂得垃圾分类的细胞因子,叫作缺氧诱导因子-1α(HIF-1α)。

他们发现,如果氧气浓度太低,缺氧诱导因子-1α就会进入细胞核,给相关的基因通报情况,让细胞赶紧做出反应。那么,当人体不缺氧时,缺氧诱导因子-1α又在做什么呢?这时它完全不发挥作用,因为它被人体当作垃圾分解掉了。

美国医学家小威廉·凯林,和彼得·拉特克利夫陆续发现,这是因为在人体细胞中,还有一帮分子在默默地搞垃圾分类。

具体地说,当人体不缺氧时,氧气和一种叫作VHL的分子,会将缺氧诱导因子-1α,标记成了“易腐垃圾”。于是,细胞就会把它分解掉,防止人体过度反应。这种缺氧保护机制十分重要。正常细胞固然离不开它,但癌细胞更加离不开它!

科学家推测,如果能够发明一种药物,用它打破癌细胞的缺氧保护,就有可能抑制癌细胞的生长,甚至杀死癌细胞!

为了表彰他们发现细胞感知和适应环境含氧量的相关机制,诺奖委员会授予小威廉·凯林,彼得·拉特克利夫和格雷格·塞门扎,2019诺贝尔生理学或医学奖!

缺氧诱导因子的机制

HIF中α亚基上的脯氨酸残基会透过HIF脯氨酰羟化酶羟基化,而使其能被 VHL E3泛素连接酶辨识并泛素化,之后透过蛋白酶体使其被快速降解。这只会发生在含氧量正常的条件。但在缺氧条件下,HIF脯氨酰羟化酶会被抑制,因为它利用氧作为辅助基质。

在琥珀酸去氢酶复合物中,电子转移的抑制是因为SDHB或SDHD基因的突变,其会导致琥珀的积聚,进而抑制HIF脯氨酰羟化酶的活性,稳定HIF-1,α,这被称为伪组织缺氧。

HIF-1,当持续在缺氧条件下,正向调节多种基因以能在低含氧量的情况下生存。 HIF-1能调节的酵素包括糖解作用酶,使其能以不耗氧的方式合成三磷酸腺苷;还有血管内皮生长因子(VEGF),能促进血管新生。HIF-1的触发,是借由HIF-反应元件(HREs)结合到了启动子上的NCGTG序列。

已有实验证明,肌A激酶锚定蛋白(mAKAP)组成的E3泛素连接酶能作用于HIF-1,影响其稳定性与 *** ,使其移动至细胞核中。 当 mAKAP 耗尽或因其他因素干扰 mAKAP *** 在细胞核(心肌细胞)周围区域时,会影响了HIF的稳定性,与其他和缺氧相关基因的转录活性。因此,将对氧气敏感的信号物件“区域化”,可能影响缺氧时反应的进行。

在过去,与缺氧环境下HIF的调控机制资讯相较而言,含氧量正常时透过NF-κB介入的HIF调控机制和功能讯,尚处于不明确的状况。同样的,HIF-1α亚基的稳定性,在非缺氧环境下,其运作机制也是未知的。但近期指出,NF-κB(NF-κB)是HIF-1α在正常含氧量下的直接调节因子。以小干扰RNA作用在NF-κB上发现到,其会影响HIF-1α mRNA 的表现程度,因此证实了NF-κB能HIF-1α的表现。最后,当进行 *** 坏死因子-α(TNAα)治疗时,NF-κB被大量诱导表现,HIF-1α表现程度也受到影响。HIF-1和HIF-2具有不同的生理作用。 HIF-2用于调节 *** 体内的红血球生成素。

细胞缺氧会怎样?

论细胞如何承受缺氧之轻? 本篇主要针对 动物细胞 从以下两个方面展开

1.细胞 感知氧气水平 与 缺氧应激

2.细胞 损伤与坏死

【背景介绍】

氧气的重要性很早就被人类认识到,地球上绝大部分的生命需要依靠这些氧气不断地进行新陈代谢。比如普通人可以十几天不吃饭,也可以几天不喝水,但如果不呼吸,一般情况下几分钟就会死亡。

但是,氧气在地球上的分布并不是均匀的,生物体对于氧气水平的适应也存在个体差异性,比如高原鼠兔,藏羚羊,藏族人群能够很好地适应空气稀薄的高原环境,普通人在高原环境中生活一段时间后,也可以适应相对缺氧的环境(相较于平原地区)。

那么,动物细胞是怎样感知和适应氧气含量变化的呢?

【更新教科书的发现】

早期理论基础:

早期,科学家认为对氧气的感受是 少数细胞特有的能力 。例如在颈动脉体和主动脉体就存在感受血液中氧气浓度的化学感受器,能通过神经反射调节呼吸频率和血压。(1938年的诺贝尔生理学或医学奖就授予相关研究)

新的发现:

20世纪90年代初,Semenza和Ratcliffe发现了缺氧诱导因子(Hypoxia-induciblefactors,HIF),并证实它是 许多细胞感受低氧的共同分子 。

1995年,Semenza和博士后王光纯化了HIF-1,Semenza和Ratcliffe又发现了HIF的多种调控作用。

1996年, *** 专家Kaelin通过研究VHL综合征(一种与氧气调控通路有关的 *** 疾病),发现VHL蛋白可以通过氧依赖的蛋白水解作用负性调HIF-1。

三位科学家的研究成果形成了一个完美的闭环,诠释了 细胞感知和适应氧气的机制 ,为许多疾病的治疗提供了新的途径,获得了2019年诺贝尔生理学或医学奖。

【细胞感知和适应氧气的机制】

缺氧诱导因子HIF-1是一种由两个亚单位组成(HIF-1α&HIF-1β)的蛋白,其中只有HIF-1α蛋白受氧调控,而HIF-1β与氧无关。作为转录因子,HIF-1能够通过与顺式作用元件(即启动子,增强子)结合,进而调节下游多个基因的表达。

如下图A所示,在正常氧水平下, HIF-1α会被羟基化标记,再泛素化标记(死亡标签),最终被蛋白酶体降解,在这一过程中(泛素化连接)需要VHL蛋白协助。

如B所示,当氧水平低时(缺氧) ,HIF-1α则受到保护,与HIF-1β结合并在核中聚集,,并结合到缺氧调节基因中的特定DNA片段,调节下游靶基因的表达。

如C所示,VHL综合征 则是由于VHL蛋白功能异常,导致HIF-1α不能被正常降解而累积,引起下游基因表达升高而导致多 *** 的发生。

那么,哪些基因的表达会受到调控呢?

HIF的靶基因涉及EPO、VEGF、糖酵解酶、葡萄糖转运体等等

EPO(Erythropoietin): *** 激素 水平升高,会导致红细胞产量的增加,进而促进造血增强携氧能力。

VEGF(VascularEndothelialGrowthFactor):为血管内皮细胞生长因子, 这种活性成分会促使血管内皮细胞增殖,从而促进毛细血管的生成,为组织和细胞送去更多血液,从而提供更多氧气。

另外,细胞膜上的 葡萄糖转运体 增多,促进细胞摄取利用葡萄糖。

与此同时,由于缺氧使葡萄糖有氧氧化出现障碍,与 糖酵解相关的磷酸化酶和磷酸果糖激酶 活性增高,葡萄糖无氧酵解增强,以维持细胞内的低能量供应。

(这便很好地解释了当人们在高海拔地区活动时,人体的新陈代谢发生的变化;比如我们看到一些高原地区生活的人们面颊出现红色斑块,形成有地域特色的‘高原红’,就与EPO、VEGF相关)

小结: 当细胞处于缺氧的环境中,会 感知氧气水平 ,并出现一系列的 缺氧应激 。

【细胞损伤与细胞坏死】

当然,细胞对缺氧的适应 存在一定的限度 。长时间的缺氧必然导致细胞损伤,甚至坏死,主要体现在以下几个方面。

酸中毒: 由于糖酵解使乳酸增多和磷酸酯水解产生的无机磷酸增加导致酸中毒。在早期,可使核染色质块状聚集

细胞水肿: 正常情况下,细胞膜上的钠钾泵(Na+,K+-ATP酶)能主动将钠和钾排出和摄入细胞,以维持各自在细胞内外液的化学梯度。而缺乏ATP使钠钾泵主动转运功能障碍,钠在细胞内蓄积,钾外流,而钠的净内流量增多;细胞内分解代谢产物如无机磷酸、乳酸等增多,均使细胞内渗透压增高,水内流增加。内质网和线粒体亦水肿膨胀[3]。

*** 白从粗面内质网脱落,蛋白和酶等合成减少。

细胞膜严重损伤,线粒体发生严重的不可逆转的功能和形态异常[4],溶酶体膜损伤或破裂……

最终,细胞坏死!

【彩蛋】

既然氧气那么重要,为什么有些细胞生物中又能在没有氧气的环境中生活呢?

这又是另外一个故事了!

参考文献

缺氧诱导因子的作用

在细胞中,HIF信号级联反应会受到缺氧状态的影响。在缺氧状态下,通常会让细胞持续的细胞分化。然而,缺氧状态促进了血管新生,对于胚胎中的血管系统与癌症 *** 来说非常重要。 伤口处的缺氧状态,也促进了角质细胞的移动与上皮组织的修护。

在普遍情况下,HIF是发育的重要关键。在哺乳动物中,若缺少了HIF-1的基因,将导致胎儿死亡。HIF-1已经被证实,对于软骨细胞的存亡有重大的影响,他能使软骨细胞适应在骨骼间生长板的缺氧环境。缺氧诱导因子在人类的代谢调节中,属于一个核心角色。

缺氧诱导因子的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于缺氧诱导因子脯氨酰羟化酶抑制剂、缺氧诱导因子的信息别忘了在本站进行查找喔。

版权声明:本站所有资料均为网友推荐收集整理而来,仅供学习和研究交流使用。

原文链接:https://www.sast-sy.com/ea790Bj0EBgRRUgU.html

标签:缺氧诱导

发表评论:

管理员

  • 内容1434378
  • 积分0
  • 金币0

Copyright © 2022 四叶百科网 Inc. 保留所有权利。 Powered by ZFCMS 1.1.2

页面耗时0.0532秒, 内存占用1.74 MB, 访问数据库18次

粤ICP备21035477号