水滑石(水滑石咀嚼片)

 2023-09-11  阅读 15  评论 0

摘要:今天给各位分享水滑石的知识,其中也会对水滑石咀嚼片进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!什么是水滑石呢?简介一下。水滑石层状双金属氢氧化物(Layered Double Hydroxide,LDH)是水滑石(Hydrotalcite,HT)和类水滑石化合物(Hydrotalcite-Like Compounds,HTLCs)的统称,由这些化合物插层组装的一系列超分子

今天给各位分享水滑石的知识,其中也会对水滑石咀嚼片进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

什么是水滑石呢?简介一下。

水滑石

层状双金属氢氧化物(Layered Double Hydroxide,LDH)是水滑石(Hydrotalcite,HT)和类水滑石化合物(Hydrotalcite-Like Compounds,HTLCs)的统称,由这些化合物插层组装的一系列超分子材料称为水滑石类插层材料(LDHs)。1842年Hochstetter首先从瑞典的片岩矿层中发现了天然水滑石矿;二十世纪初人们由于发现了LDH对氢加成反应具有催化作用而开始对其结构进行研究;1969年Allmann等人通过测定LDH单晶结构,首次确认了LDH的层状结构;二十世纪九十年代以后,随着现代分析技术和测试手段的广泛应用,人们对LDHs结构和性能的研究不断深化。

请问“水滑石”是什么?烦请具体一点告知,谢谢!!

水滑石是一类具有特殊结构的层状无机材料.

具有可调变的组成及独特的结构和性能,在离子交换、吸附分离、催化、医药等领域得到广泛应用〔1~4〕.

特别是水滑石类材料所具有的选择性、红外吸收性和离子交换性等一些特殊性能,使其作为新型无机功能材料已应用于PE农膜(保温剂)和PVC(无毒热稳定剂)等高分子材料中,显示了独特的性能〔5〕.

作为无机功能材料,水滑石在复合材料中的应用必然涉及其粒子尺寸和分布,因此对水滑石晶化规律的研究非常重要.

水滑石成熟的合成方法是共沉淀法〔6〕,如单滴法、双滴法.由于沉淀粒子是渐次产生,从第一个粒子的形成到最后一个粒子的产生,其时间相差很大,必然导致粒子大小不均,因此更好度能将成核与晶化分开,最大限度保证水滑石的生长环境一致.

为此本文在成核/晶化隔离法基础上,研究了水热条件下晶化温度和晶化时间对镁铝水滑石晶体生长的影响.

结果表明,在水热条件下通过对晶化温度和晶化时间调节,可以有效控制晶相结构及晶粒尺寸.……

水滑石结构及性质

类水化合物和水滑石这两种物质都有着特殊的化学物理性质和层状结构,而其中水滑石的材料是属于阴离子型层状化合物。层状机构和层间离子这两种化合物有着可交换性,水滑石类化合物的孔径可调整改变,并且拥有着一种极其容易吸附的催化功能,不论是在催化方面还是吸附方面都有着极大的作用,给我们的生活带来了不少的方便。这么多的好处我们一定要详细说说水滑石的具体情况了。接下来给大家分析下水滑石的构成和应用。

水滑石的结构

水滑石是通过层间阴离子与带有正电荷的主体层板利用共价键间的相互作用而组成的一种化合物,它的结构和水镁石非常的相似,是由MgO6八面体共用的棱而形成出单元层的效果。它有三个非常重要的特点,一是:主体层中的化学组成的部分可以随时调整和改变的。二是:层间客体阴离子的数量和种类也同样都是可以调整和改变的。三是:插层组装体重的分布粒径尺寸也可以控制调节。

水滑石的应用

水滑石主要应用于吸附,离子交换,分离,传导,医药,催化等众多领域当中。而其中最为广泛的应用是在PVC材料中,它具有热稳定剂及阻燃剂,可使PVC材料更加的耐热和阻止其燃烧的特性。

水滑石的性质

1.水滑石的层板因为是由氧八面体与镁八面体组成的所以它是具有很强的碱性的。

2.水滑石的层间阴离子是有着可交换性的。

3.当水滑石被加热到一定温度的时候,它会发生分解,但在200度以下的温度它是没有任何影响的,所以说水滑石具有一定的热稳定性能。

4.在一定温度下焙烧水滑石,水滑石中部分结构会恢复到以前的状态,所以水滑石有着良好的记忆性。

5.阻燃性能好,可广泛应用于塑料,涂料以及橡胶,PVC等方面。

6.红外吸收能力较强。

水滑石因为有着多种性能,所以被我们重视且利用着,尤其是在催化方面,可作为碱性催化剂,催化剂载体和氧化还原催化剂,甚至还可以用于重整,加氢,裂解,聚合,缩聚等反应的催化剂。而且阻燃性特别好,在塑料PVC方面也有这良好的使用效果。给社会发展带来这巨大改变,也对催化方面有着极大的贡献。

水滑石有什么用?

水滑石在在催化方面,医药方面,离子交换和吸附方面都有很广泛的应用。

一、在催化方面的应用

因水滑石具有独特的结构特性,从而可以作为碱性催化剂、氧化还原催化剂以及催化剂载体。如:它可以作为加氢、重整、裂解、缩聚、聚合等反应的催化剂;Suzuki和Reichle分别报道了用水滑石及不同阴离子取代的水滑石作2-羟基丁醛缩聚反应的催化剂,以及用含稀土La水滑石催化合成邻苯二甲酸二戊酯等。

LDHs作为多相碱性催化剂,在许多反应中正在取代N a O H 、K O H 等传统碱性催化剂。由于同多和杂多阴离子柱撑水滑石具有独特的性能,如具有可调变的孔道结构及较强的择形催化和酸碱性能而倍受人们的重视。

文献报道比较多的主要是采用二元、三元同多或杂多酸阴离子做柱撑剂,用它们考察过的催化反应有加氢、重整、裂解、缩聚、费—托合成制低碳醇、酯化、催化氧化等。

二、医药方面的应用

水滑石类化合物可以作为治疗胃病如胃炎、胃溃疡、十二指肠溃疡等常见疾病上述胃病一般是由于胃酸过多并积累,胃长期处于酸性环境之中而导致的慢 *** ,其治疗方法主要是通过采用碱性的药物,通过中和反应调节胃液pH值,适当抑制胃蛋白酶的活性,使胃组织功能恢复正常。

采用水滑石,其缓冲范围是pH值=3~5,能够有效地抑制胃蛋白酶的活性,药效显著且持久,它作为抗酸药,在迅速取代第一代氢氧化铝类传统抗酸药。

研究证明,通过改进水滑石的阴离子组成,得到一些含磷酸盐阴离子的类水滑石,它们作为抗酸药,将继承传统抗酸药的优点,并且可以避免导致软骨病和缺磷综合症等副作用的发生。

三、离子交换和吸附方面的应用

LDHs可以作为阴离子交换剂使用。LDHs的阴离子交换能力与其层间的阴离子种类有关,阴离子交换能力顺序是CO3 SO4HPO4 F ClB(OH)4NO3。高价阴离子易于交换进入LDH层间,低价阴离子易于被交换出来。LDHs由于具有较大的内表面积,容易接受客体分子,可被用来作为吸附剂。

目前,在印染、造纸、电镀和核废水处理等方面已有使用LDH、LDO作为离子交换剂或吸附剂的研究报道。

如用LDH 通过离子交换法去除溶液中某些金属离子的络合阴离子,如Ni(CN)4、CrO4等;用Li和Al与直链酸构成的LDH可以作为疏水性化合物的吸附剂;利用LDH的选择性以及异构体不同的插入能力来分离异构体;LDH 、LDO作为一种具有很大潜力的酚类吸附剂,可以从废水中吸附三氯苯酚(TCP)、三硝基苯酚(TNP)等。

LDHs的离子交换性能与阴离子交换树脂相似,但其离子交换容量相对较大(如水滑石,3.33meq/g)、耐高温(300℃)、耐辐射、不老化、密度大体积小,上述特点尤其适合于核动力装置上放射性废水的处理。

如在核废水中放射性I-离子的处理可以用LDH。LDO对于金属离子具有较强的吸附能力。如核废水中的Co离子,可以使用LDO 处理,它不仅吸附Co阳离子还同时吸附溶液中的阴离子,如SO4等,它可以在较高的温度下(500℃)进行,与离子交换树脂相比具有不可比拟的优势。

水滑石的性质

水滑石有以下十项基本性质

1 碱性

LDHs 最基本的性质是碱性,水滑石类层状化合物的层板上含有碱性位OH-,此碱性位可与其它化合物反应接枝,改变其化学或物理性质,赋予水滑石以新的性能。不同 LDHs 的碱性强弱与组成中二价金属氢氧化物的碱性强弱基本一致,但由于它一般具有很小的比表面积(约5~20m2/g),表观碱性较小,其焙烧产物CLDH表现出较强的碱性。总体来讲,LDHs为弱碱性化合物,在碱性环境下比酸性环境下稳定。

2 酸性

LDHs的酸性与层板上金属离子的酸性和层间阴离子有关。不同LDHs的酸性强弱与三价金属氢氧化物的酸性强弱和二价金属氢氧化物的碱性强弱有关。层间阴离子电荷分布影响层板酸碱性的变化。

3 层间阴离子的可交换性

LDHs的层间具有可交换的阴离子,其阴离子交换容量可达2000~5000mmo1/kg。一方面可将其用作阴离子交换材料,一般,阴离子在水滑石层间的离子交换能力顺序为CO32-SO42-HPO42-F-CI-Br-NO3-I-,高价阴离子易于进入LDHs层间,低价阴离子易于被交换出来。另一方面,通过对层间阴离子的种类和数量进行设计和组装,可以将各种阴离子如无机、有机、同多、杂多阴离子或配合物阴离子引入水滑石层间,从而调变了层间距,同时使柱撑LDHs的择形催化性能更加显著,也可以用体积较大的阴离子取代体积较小的阴离子,以期得到更多的活性中心,得到具有不同功能的新材料。除了层间阴离子,层状材料的结晶度和层间电荷大小也是影响水滑石类材料离子交换性能的因素。

4 记忆效应 

在一定温度下将LDHs焙烧一定时间的样品(此时样品的状态通常是LDHs中金属离子的复合氧化物)加入到含有某种阴离子的溶液介质中,其结构可以部分恢复到具有有序层状结构的LDHs。如果将 LDHs 的焙烧产物在适当的溶液中处理,插入不同种类的阴离子,则形成不同插层结构的LDHs,达到不同的研究目的。

一般而言,焙烧温度在600℃以内,结构的恢复是可能的,以MgAl-LDH为例,温度在500℃内的焙烧产物接触到水以后其结构可以部分恢复到具有有序层状结构的LDHs;当焙烧温度在600℃以上时生成具有尖晶石结构的焙烧产物,则导致结构无法恢复。

5 粒径的可调控性

LDHs的粒子大小及粒径分布可以通过改变合成方法及条件而得以控制,从而扩大其应用范围。因为LDHs的层板厚度为纳米级,所以还可采用适宜的复合技术,使其以层板尺寸分散于有机体中,形成纳米复合材料,将无机物的刚性、尺寸稳定性与聚合物的可加工性和其它性能结合在一起,大幅度改善聚合物的物理化学性质。

6 热稳定性

LDHs由于具有层状结构,层内存在强烈的共价键作用,层间存在静电引力,以及层板与层间阴离子间存在静电吸引、氢键等非共价键弱相互作用,因此具有一定的热稳定性,其热稳定性基本相近,根据组成不同略有差异。以水滑石为例,其热分解过程包括脱结晶水、层板羟基缩水并脱除CO2和新相生成等步骤。具体如下:

(1) 焙烧温度低于200℃时,仅失去结晶水,其层状结构没有被破坏;

(2) 加热到250~450℃时,层板羟基缩水并脱除CO2;

(3) 在450~550℃区间,可形成比较稳定的双金属氧化物,简写为LDO,例如镁铝水滑石在此温度范围内的焙烧产物是Mg3A1O4(OH)。LDO仍可作为一类重要的催化剂和载体,它具有比其前驱体更大的比表面积(约200~300m2/g ),其结构中碱性中心充分暴露,因此具有比LDHs更强的碱性。CLDH在一定条件下能够重新吸收水和CO32-等阴离子而部分恢复到原来的LDHs结构这即是所谓的“记忆效应”,反应方程式如下:

Mg1-xA1x(OH)2(CO3)x/2·yH2O→Mg1-xA1xO1+x/2+(x/2)CO2+(l+y)H2O

Mg1-xAlxO1+x/2+(x/n)An-+(1+(x/2)+y)H2O→Mg1-xAlx(OH)2An-x/n·yH2O+xOH-

(4) 当加热温度超过600℃时,形成尖晶石相产物,例如镁铝水滑石开始形成尖晶石MgAl2O4和MgO,金属氧化物的混合物开始烧结,使表面积大大降低,孔体积减小,碱性减弱。

7 阻燃性能

LDHs在受热时,其结构水和层板羟基及层间阴离子以水和CO2的形式脱出,起到降低燃烧气体浓度、阻隔O2气的阻燃作用;并且LDHs的结构水、层板羟基及层间阴离子在不同温度范围内脱离层板,从而可在较大范围内(200~800℃)释放阻燃物种;在阻燃过程中,吸热量大,有利于降低燃烧时产生的高温。

8 红外吸收性能

LDHs在1370cm-1附近出现层间CO32-的强特征吸收峰,在1000~400cm-1范围有层板上M-O键及层间阴离子的特征吸收峰,并且其红外吸收范围可以通过调变组成加以改变。

9 紫外阻隔性能

在LDHs层间插入有机紫外吸收剂基团,可选择性提高LDH的紫外吸收性能,提高对光的稳定性。

10 杀菌防霉性能

LDO是LDHs的焙烧产物,其二价金属离子中为锌离子的LDO具有良好的杀菌防霉性能,且其杀菌防霉性能可随材料的组成、结构不同而改变。

水滑石的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于水滑石咀嚼片、水滑石的信息别忘了在本站进行查找喔。

版权声明:本站所有资料均为网友推荐收集整理而来,仅供学习和研究交流使用。

原文链接:https://www.sast-sy.com/ea9cbBj0HDABZVwA.html

标签:滑石咀嚼片

发表评论:

管理员

  • 内容1439024
  • 积分0
  • 金币0

Copyright © 2022 四叶百科网 Inc. 保留所有权利。 Powered by ZFCMS 1.1.2

页面耗时0.0585秒, 内存占用1.75 MB, 访问数据库18次

粤ICP备21035477号