日盲紫外探测器(日盲紫外探测器 阵列)

 2023-09-08  阅读 9  评论 0

摘要:今天给各位分享日盲紫外探测器的知识,其中也会对日盲紫外探测器 阵列进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!光电倍增管的工作原理光电倍增管的工作原理是具有极高灵敏度和超快时间响应的光敏电真空器件,可以工作在紫外、可见和近红外区的光谱区。日盲紫外光电倍增管对日盲紫外区以外的可见光、近紫外等光谱辐射不灵敏。当光照射到光阴极时,光阴极向真空中激发出光电子。这些光电子按聚焦极电

今天给各位分享日盲紫外探测器的知识,其中也会对日盲紫外探测器 阵列进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

光电倍增管的工作原理

光电倍增管的工作原理是具有极高灵敏度和超快时间响应的光敏电真空器件,可以工作在紫外、可见和近红外区的光谱区。日盲紫外光电倍增管对日盲紫外区以外的可见光、近紫外等光谱辐射不灵敏。

当光照射到光阴极时,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。

然后把放大后的电子用阳极收集作为信号输出。因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的辐射能量的光电探测器中,具有极高的灵敏度和极低的噪声。另外,光电倍增管还具有响应快速、成本低、阴极面积大等优点。

扩展资料

光电倍增管的稳定性是由器件本身特性、工作状态和环境条件等多种因素决定的。管子在工作过程中输出不稳定的情况很多,主要有:

a、管内电极焊接不良、结构松动、阴极弹片接触不良、极间尖端放电、跳火等引起的跳跃性不稳现象,信号忽大忽小。

b、阳极输出电流太大产生的连续性和疲劳性的不稳定现象。

c、环境条件对稳定性的影响。环境温度升高,管子灵敏度下降。

d、潮湿环境造成引脚之间漏电,引起暗电流增大和不稳。

e、环境电磁场干扰引起工作不稳。

红外线可透视和夜视功能,可利于战争,紫外线又有哪些功能助于战争?

紫外线军事上主要用于 消毒和通讯

紫外光(线)是电磁波谱中波段在10~400nm波长范围的一段.众所周知,在自然界中,太阳是最强烈的紫外辐射源.太阳辐射的紫外线在通过大气层时呈现出以下特点:

(1)高空大气层中的氧气强烈吸收波长小于200nm的紫外线,故该波段的紫外线只可能在外

太空中存在.

(2)由于大气平流层中的臭氧层对250nm波长附近的紫外线有强烈的吸收作用,因而太阳中的这一波段紫外辐射在近地大气中几乎不存在,常被称为“日盲区”,其波段范围为200~300nm;

(3)太阳辐射中的近紫外成分(300~400nm)能较多地透过地球大气层,因此该波段被称为大气的“紫外窗口”.由于紫外辐射在大气层中传播时受到强烈的散射作用,所以在近地大气中这一波段紫外辐射是均匀分布的.紫外光(线)诸多应用尤其是军事应用,均以紫外线在大气中的传输特性为研究基础.选择紫外光通信系统工作在200~300nm波段,信号在传输过程中几乎不存在大气背景噪声干扰

紫外光通信具有的特点:

(1)低 *** 率 紫外线在传输过程中受到大气分子、悬浮颗粒吸收和散射,能量衰减得很快,因此在有限距离外,即使紫外探测器也不能 *** ;

(2)低位辨率 一方面由于紫外线为不可见光线,所以肉眼很难发现;另一方面,由于紫外信号传输是有限距离传输,所以敌人难以从远距离上获得足够的紫外辐射信号来判断我方发射机的位置;

(3)抗干扰能力高 一方面紫外在大气中衰减极大,所以敌人不能采用普遍意义上的干扰方式进行干扰;另一方面,由于大气对流层中的臭氧分子对太阳光中的紫外成分有极强的吸收,工作于此“日盲”波段的紫外传输可以看作是无背景噪声干扰的传输;

(4)全方位性 紫外线由于具有较大的散射,决定了它不仅可以和其他光信息传输一样进行定向通信,而且可以进行大角度非视线信息传输;

(5)全天候工作 该系统工作在日盲区(200~300nm),而地表在这个波段辐射很少,可以全天候工作

望采纳!!

日盲滤光片

科学家发现波长小于285 nm的太阳光在穿透大气到海平面的过程中几乎完全被臭氧层吸收,这使得在海平面到海拔20公里的范围内几乎不可能探测到这个波段的太阳光,因此,这个波段被称为日盲紫外波段。

利用地球大气中臭氧的特性,太阳盲滤光片对200 280nm波段的自然光有很强的吸收和散射作用,200nm 280nm(简称“太阳盲带”)很难到达地球表面。因此,许多研究机构具有背景噪声低、虚警率低、隐蔽性强、结构简单、用途广泛等优点,利用太阳盲滤波器检测太阳光照射下微弱的紫外信号。该太阳光盲滤光片在可见光和近红外波段具有良好的性能、较高的透射率和足够深的截止率。

日盲紫外滤光片是日盲紫外探测系统的核心器件,它用于滤除探测环境中其他谱段辐射的干扰,使探测器可以更好地探测日盲区紫外辐射,从而提高探测系统的信噪比,降低虚警率。因此,日盲紫外滤光片带外截止深度的测试极为重要,对其要求也日趋严格。

测量滤光片截止深度的仪器主要有分光光度计、DF透反仪、声光调制检测系统等。其中,分光光度计和DF透反仪适合测量截止深度低于2-OD的滤光片。

声光调制检测系统利用声光调制器、透射式衰减片、积分球等设备将滤光片截止深度的测量范围扩展到6-OD。但是对于带外深度截止、部分谱段可达10-OD的日盲紫外滤光片来说,其截止深度的动态测量范围仍然有所不足。 太阳能盲滤光片广泛应用于电力线、电晕探测、高压设备电晕放电探测、森林火灾探测、遥感探测设备、大气环境研究、紫外成像、天基预警、制导、紫外通信等光学领域,生化分析、生物医学分析、公安侦察等许多领域都具有巨大的商业和军事应用价值。

光电倍增管工作原理

光电倍增管工作原理:

光电倍增管建立在外光电效应、二次电子发射和电子光学理论基础上,结合了高增益、低噪声、高频率响应和大信号接收区等特征,是一种具有极高灵敏度和超快时间响应的光敏电真空器件,可以工作在紫外、可见和近红外区的光谱区。日盲紫外光电倍增管对日盲紫外区以外的可见光、近紫外等光谱辐射不灵敏,具有噪声低(暗电流小于1nA)、响应快、接收面积大等特点。

光电倍增管是将微弱光信号转换成电信号的真空电子器件。光电倍增管用在光学测量仪器和光谱分析仪器中。它能在低能级光度学和光谱学方面测量波长200~1200纳米的极微弱辐射功率。闪烁计数器的出现,扩大了光电倍增管的应用范围。激光检测仪器的发展与采用光电倍增管作为有效接收器密切有关。电视电影的发射和图象 *** 也离不开光电倍增管。光电倍增管广泛地应用在冶金、电子、机械、化工、地质、医疗、核工业、天文和宇宙空间研究等领域。(《中国大百科全书·电子学与计算机》)

光电探测器

PIN 紫外光电探测器的研制

黄 瑾, 洪灵愿, 刘宝林, 张保平

( 厦门大学物理系,福建厦门361005)

摘 要: 用Al InGaN 四元合金代替Al GaN 作为PIN 探测器的有源层,研制出Al InGaN

PIN 紫外探测器。详细介绍了该器件的结构设计和制作工艺,并对器件进行了光电性能测试。测

试结果表明,器件的正向开启电压约为1. 5 V ,反向击穿电压大于40 V ;室温- 5 V 偏压下,暗电流

为33 pA ,350 nm 处峰值响应度为0. 163 A/ W ,量子效率为58 %。

关键词: Al InGaN/ GaN ; PIN 光电探测器; 紫外光电探测器

中图分类号: TN304 文献标识码: A 文章编号: 1001 - 5868 (2008) 05 - 0669 - 04

Development on Al InGaN/ Ga N PIN Ultr *** iolet Photodetectors

HUAN GJ in , HON G Ling2yuan , L IU Bao2lin , ZHAN G Bao2ping

(Dept. of Physics , Xiamen University , Xiamen 361005 , CHN)

Abstract : Using Al InGaN instead of Al GaN as t he source film of a p hotodetector s , an

Al InGaN2based PIN UV p hotodetector was developed. It s device st ruct ure and fabrication

processing are int roduced in detail . Measurement result s show t hat it s t urn2on voltage is about

1. 5 V , and VBR 40 V ; under - 5 V bias voltage at room temperat ure , t he dark current is about

33 pA ; t he peak responsivity can reach 0. 163 A/ W at 350 nm , and t he quant um efficiency is

58 %.

Key words : Al InGaN/ GaN ; PIN p hotodetector ; ult r *** iolet p hotodetector

1 引言

GaN 基三元合金Al x Ga1 - x N 材料是波长范围

连续的直接带隙半导体,随材料Al 组分的变化其

带隙在3. 4~6. 2 V 连续变化,带隙变化对应波长范

围为200~365 nm ,覆盖了地球上大气臭氧层吸收

光谱区(230~280 nm) ,是制作太阳盲区紫外光探

测器的理想材料。Al GaN 基宽禁带半导体探测器

作为新一代紫外探测器[1 ] ,在军事和民用上都有重

要的应用,受到国内外的广泛重视。

目前,Al GaN/ GaN 材料和器件结构仍存在诸

多有待解决的问题: (1) 作为有源区的Al GaN 与作

为衬底的GaN 材料之间晶格失配,导致外延层位错

密度较高和紫外探测器的暗电流较大; (2) p 型掺

杂Mg 的激活能很大,其激活率很低,p 型Al GaN

材料带隙宽、功函数高,空穴浓度低,从而难于获得

良好的金属与p 型半导体接触(欧姆接触) ; (3) 结构

的优化设计,例如减少表面光反射率,优化有源层厚

度,提高器件的量子效率,从而提高其光响应度等。

针对这些困难,我们提出了以下几个改进措施:

(1 ) 用晶格常数和禁带宽度可以独立变化的

Al InGaN 四元合金代替Al GaN 作为探测器的i 层;

(2) 在p 型Al InGaN 材料上再生长一层p 型GaN

材料,用于提高与金属接触层的半导体的空穴浓度,

有利于形成良好的欧姆接触; (3) 采用Ni/ Au 双层

作为p 电极,形成了良好的金属与半导体欧姆接触。

本文通过对Al InGaN/ GaN PIN 紫外光电探测器的

研究,详细介绍了其结构设计和制作工艺,以及其器

件的测试结果。

·669 ·

《半导体光电》2008 年10 月第29 卷第5 期黄 瑾等: Al InGaN/ GaN PIN 紫外光电探测器的研制

2 问题分析和解决方案

目前,紫外光电探测器一般采用Al GaN/ GaN

结构。随着Al GaN 中的Al 组分增加及响应波长的

减小,Al GaN 和GaN 之间的晶格失配变大,应力增

大,大大限制了Al GaN/ GaN 结构的器件性能,特别

是其暗电流和响应度。但是,Al InGaN 四元合金的

禁带宽度Eg 和晶格常数却可以独立变化,使我们

有可能调整禁带宽度到所需要的数值,同时保持较

低的位错密度,从而降低暗电流。图1 中的虚线代

表了晶格常数与GaN 一致的Al InGaN 的禁带宽度

的变化范围,如果用Al InGaN 四元合金做有源区,

就可以解决晶格失配所带来的问题。

四元合金Al x Iny GazN 晶格常数a 随组分的变

化关系可表示为[ 3 ]

aAl x In y Ga zN = xaAlN + yaInN + zaGaN (1)

式中, x + y + z = 1 。Al x Iny GazN 带隙随组分的变

化关系可表示为[ 4 ]

Q( x , y , z) = xy T12

1 - x + y

2 + yz T23

1 - y + z

2 +

xz T13

1 - x + z

2 / ( xy + yz + xz ) (2)

式中, Tij (α) =αB j + (1 - α) Bi + bijα(1 - α) , i , j =

1 ,2 ,3 分别代表AlN , InN ,GaN ,B 代表二元合金的

禁带宽度, b 代表三元合金的弯曲系数, b12 = - 5 ;

b23 = - 4. 5 ; b13 = - 1 。

图1 纤锌矿结构的GaN 基材料的禁带宽度与晶格常数的

关系

如果aAl x In y Ga zN = aGaN , 即Al InGaN 与GaN 晶

格匹配。把表1 的各项参数带入式(1) ,得到x ∶y

= 4. 47 ∶1 。那么,与GaN 晶格匹配的Al InGaN 的

禁带宽度范围从3. 39 eV ( GaN ) 到4. 67 eV

(Al0. 817 In0. 183N) ,相应的波长从365 nm ( GaN) 到

266 nm (Al0. 817 In0. 183 N) 。这一波段正好处于日盲

区域,是紫外光探测器的理想探测波段。

表1 纤锌矿结构的GaN 基材料的禁带宽度和晶格常数[ 2]

参数GaN AlN InN

a/ nm 0. 318 9 0. 311 2 0. 353 3

c/ nm 0. 518 6 0. 498 2 0. 569 3

Eg / eV 3. 39 6. 20 1. 90

3 实验结果及分析

3. 1 样品结构生长及材料性能

本研究使用中国科学院半导体所用MOCVD

系统生长的Al InGaN 材料。样品A 是我们研制

PIN 型紫外光电探测器的总体结构。先在Al2 O3 衬

底上生长GaN 缓冲层, 再生长3 μm 掺Si 的n2

GaN , 然后是0. 2μm 的未掺杂的i2Al InGaN ,再生

长0. 2μm 的掺Mg 的p2Al InGaN ,最后生长0. 1

μm 的掺Mg 的p2GaN 作为欧姆接触层。为了研究

中间的未掺杂的Al InGaN 层和p 型Al InGaN 层的

性质,我们又分别生长了样品B 和样品C。样品B

是先在Al2 O3 衬底上生长GaN 缓冲层, 再生长3

μm 掺Si 的n2GaN , 最后生长0. 1μm 未掺杂的i2

Al InGaN。样品C 是先在Al2 O3 衬底上生长GaN

缓冲层, 再生长3μm 掺Si 的n2GaN , 最后生长0. 1

μm 掺Mg 的p2Al InGaN 。

分别对样品B ,C 做了X 光三晶衍射实验。图

2 (a) 、( b) 分别是样品B 和C 的X 光三晶衍射谱。

图2 (a) 中的34. 565°的峰是GaN (0002) 峰,34. 602°

的峰是Al InGaN (0002) 峰。图2 (b) 中的34. 565°的

峰是GaN ( 0002 ) 峰, 34. 583°的峰是Al InGaN

(0002) 峰。

由此,计算出样品B 和C 的晶格常数列于表2

中。从计算结果可以看出样品B 和样品C 中

Al InGaN 与GaN 晶格常数基本匹配。

(a) 样品B

·670 ·

SEMICONDUCTOR OPTOELECTRONICS Vol. 29 No. 5 Oct. 2008

(b) 样品C

图2 样品的X光三晶衍射谱

表2 样品B和C的晶格常数

样品cGaN / nm cAl InGaN / nm

Δc

c GaN

/ %

B 0. 518 50 0. 518 00 0. 096

C 0. 518 50 0. 518 31 0. 037

为了分析Al InGaN 材料的组分,对样品进行

PL 谱测量。对比图3 (a) 、(b) 、(c) 得出,在图3 (c)

中,358. 6 nm 的发光峰为p2Al InGaN 的带边发射;

365 nm 的发光峰为GaN 的带边发射;i2Al InGaN 的

发光峰基本与GaN 的发光峰重合。计算得出p2

Al InGaN 的禁带宽度Eg = 3. 46 eV 。

(c) 样品A

图3 样品的室温(300 K) PL 谱

根据上面分析可知, 与GaN 晶格匹配的

Al x Iny GazN材料中,Al 组分与In 组分的比值为

4. 47 ∶1 ,所以我们可以确定p2Al InGaN 材料的组

分为Al0. 080 In0. 018 Ga0. 902N。

3. 2 器件工艺

本文按常规工艺制备了如图4 所示结构的PIN

光电探测器。它包括n2GaN 底层,i2Al InGaN 光吸

收层, p2Al InGaN 过渡层, p2GaN 欧姆接触层。

SiO2 作为器件的保护层和抗反射膜,用Ti/ Al/ Ni/

Au 作n 电极,用Ni/ Au 作p 电极。

图4 Al InGaN/ GaN PIN 结构示意图

试验中对p 型欧姆接触进行了工艺优化,材料

为K0299 p 型样品。合金温度优化表明500 ℃下所

获得的接触性能更好度, 比接触电阻为1. 0 ×10 - 2

Ω ·cm2 。随后分别在K0299 ( p2GaN ) 样品和

K0294 (p2Al InGaN) 样品上制备了电极,结果p 型

Al InGaN 的I2V 特性很差,电阻率很大,难以形成

欧姆接触。相比之下,p 型GaN 的I2V 特性就好得

多, 而且形成了欧姆接触。所以我们在p 型

Al InGaN 层上面生长了一层p2GaN ,用p2GaN 来做

欧姆接触层,降低了电阻率。

·671 ·

《半导体光电》2008 年10 月第29 卷第5 期黄 瑾等: Al InGaN/ GaN PIN 紫外光电探测器的研制

4 器件性能测试与分析

图5 (a) 为Al InGaN PIN 型紫外探测器在正向

偏压下的I2V 特性曲线,其正向开启电压约为1. 5

V 。图5 (b) 为器件在反向偏压下的I2V 特性曲线,

器件的反向击穿电压约为40 V ,表现出较好的硬击

穿。由上述可见器件的I2V 特性良好。

图5 器件的I2V 特性曲线

将测试的数据进行处理,得到暗电流和反向偏

压关系曲线如图6 。从图6 可以看出,暗电流随反

相偏压增大而增大。在未加偏压时,暗电流在10 - 12

A 的数量级,在- 5 V 偏压下,暗电流仍然比较小,

仅为3. 3 ×10 - 11 A。

图7 是在- 5 V 偏压下测试得到的响应光谱。

光谱响应范围在200~400 nm ,实现了紫外探测。

Al InGaN 的禁带宽Eg = 3. 46 eV ,由公式hν≥Eg ,

λν= C ,可算出λ≤358. 4 nm。器件对波长大于358

nm 的入射光响应很小,相对峰值响应接近于零;小

于200 nm 的入射光因为波长短,光吸收系数很大,

被表面复合,无法在外电路中形成光电流[ 5 ] 。但从

图7 看出,光谱响应的范围较窄,主要原因有: (1) p2

Al InGaN 层的Al 组分小,没能形成窗口层; (2) p2

Al InGaN 层太厚,在光达到i 层前,大部分的光被p2

Al InGaN 层吸收了。

样品在350 nm - 5 V 偏压下峰响应为0. 163

A/ W ,量子效率达到58 %,性能优于T. N Oder 等

人[6 ] 报道的最大响应度0. 13 A/ W @326. 8 nm 的

In0. 02Al0. 15 Ga0. 83N 紫外光电探测器。最大响应度没

有出现在“太阳盲区”250~300 nm 范围内,主要是

因为i 层的Al InGaN 材料的Al 组分太小,使得i2

Al InGaN 的禁带宽度与GaN 的禁带宽度接近。

5 结论

采用晶格常数和禁带宽度可以独立变化的

Al InGaN 四元合金代替Al GaN 作为探测器的有源

层,成功研制出PIN 紫外光电探测器。通过PL 谱

测量和X 射线衍射实验,计算出生长的p2Al InGaN

材料的组分为Al0. 080 In0. 018 Ga0. 902 N ,与GaN 材料的

晶格失配率仅为0. 037 %。

(下转第708 页)

·672 ·

SEMICONDUCTOR OPTOELECTRONICS Vol. 29 No. 5 Oct. 2008

品温度和环境温度慢慢趋于一致,即趋于热平衡时,

电阻变化缓慢且阻值降低较小。

图6 样品B 在空气中和真空中的电阻测量结果

4 结论

采用PECVD 法制备的掺硼氢化非晶硅薄膜,

其电阻值随测试时间呈现上升趋势,经XPS 分析发

现薄膜中存在氧化现象。光照条件下,样品光电阻

上升幅度增加,长时间的光照会导致S2W 效应出

现,分析表明光照会引起材料中弱Si - Si 键的断

裂,导致悬挂键缺陷态产生。掺硼氢化非晶硅的电

阻在退火前后均呈现波动现象,是由于随机电报噪

声的存在。通过对样品在真空中和空气中电阻测

量,证实在真空中材料焦耳热作用更显著,另外空气

的对流也对材料温度变化产生影响。

参考文献:

[1 ] Spear W E , Lecomber P G. Substitutional doping of

amorphous silicon [ J ] . Solid State Communication ,

1975 ,17 (9) :1 19321 196.

[2 ] Kelly M J . Model amorphous semiconductor

st ructures : tight2binding s2band elect ronic st ructure

[J ] . J . Non2crystalline Solids , 1975 ,18 (1) :55264.

[3 ] Ching W Y,Lin C C , Guttman L. St ructural disorder

and elect ronic properties of amorphous silicon [ J ] .

Phys. Rev. B , 1977 , 16 :5 48825 498.

[4 ] Budianu E , Purica M. Optical improved st ructure of

polycrystalline silicon2based thin2film solar cell [ J ] .

Solar Energy Materials and Solar Cells , 2002 , 72 ( 12

4) :2232229.

[5 ] Tsuda S , Sakai S , Nakano S. Recent progress in a2Si

solar cells[J ] . Appl. Surface Science , 1997 , 113 :7342

740.

[6 ] Wodit sch P , Koch W. Solar grade silicon feedstock

supply for PV indust ry[J ] . Solar Energy Materials and

Solar Cell , 2002 , 72 (1) :11226.

[7 ] Pernet P ,Felder R. Optimization of amorphous silicon

solar cells on polymer film subst rates [ C ] . 14th

European Photovoltaic Solar Energy Conference ,

Spain : Barcelona , 1997 : 2 33922 342.

[8 ] 张春红,张志谦,曹海琳,等. 聚酰亚胺/ 纳米SiO2 杂

化膜的制备和表征[J ] . 材料科学与工艺, 2006 , 14

(6) :6422645.

[9 ] 陈治明. 非晶半导体材料与器件[M] . 北京:科学出版

社,1991. 63.

[10 ] 何宇亮,陈光华,张仿清. 非晶半导体物理学[M] . 北

京:高等教育出版社,1989. 172.

作者简介:

杨利霞(1985 - ) ,女,硕士研究生,研究方向为

光电传感器用硅基薄膜敏感材料。

E2mail : lee4963 @163. com

(上接第672 页)

合金温度优化表明500 ℃合金退火下所获得的

p 型欧姆接触性能更好度,比接触电阻为1. 0 ×10 - 2

Ω ·cm2 。I2V 特性显示,器件正向开启电压为1. 5

V 左右,反向击穿电压为40 V ;在- 5 V 偏压下,暗

电流为3. 3 ×10 - 11 A ;样品在350 nm 下的最大响应

度为0. 163 A/ W ,量子效率为58 %,显示出了良好

的器件特性。

参考文献:

[1 ] Litton C W ,Schreiber P J , Smith G A , et al . Design

requirement s for high2sensivity UV solar blind imaging

detectors based on AlGaN / GaN photodetector arrays :

A review[J ] . Proc. SPIE , 2001 , 4 454 : 2182232.

[2 ] Levinshtein M E ,Rumyant sev S L. 先进半导体材料

性能与手册[M] . 北京:化学工业出版社, 2003.

[3 ] McIntosh F G, Bout ros K S , Robert s J C , et al.

Growth and characterization of Al InGaN quaternary

alloys[J ] . Appl. Phys. Lett . ,1996 , 68 (1) :40242.

[4 ] Aumer M E ,LeBoeuf S F , Mclntosh F G, et al. High

optical quality Al InGaN by metalorganic chemical

vapor deposition [ J ] . Appl. Phys. Lett . , 1999 , 75 :

3 315.

作者简介:

黄 瑾(1983 - ) ,女,福建人,硕士研究生,主要

从事GaN 基材料和器件的研究。

E2mail : yehehuangjin0207812 @hotmail . com

·708 ·

SEMICONDUCTOR OPTOELECTRONICS Vol. 29 No. 5 Oct. 2008

日盲紫外探测器的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于日盲紫外探测器 阵列、日盲紫外探测器的信息别忘了在本站进行查找喔。

版权声明:本站所有资料均为网友推荐收集整理而来,仅供学习和研究交流使用。

原文链接:https://www.sast-sy.com/eac13Bj0AAwFZUww.html

标签:探测器阵列

发表评论:

管理员

  • 内容1434378
  • 积分0
  • 金币0

Copyright © 2022 四叶百科网 Inc. 保留所有权利。 Powered by ZFCMS 1.1.2

页面耗时0.0404秒, 内存占用1.77 MB, 访问数据库18次

粤ICP备21035477号